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It is proposed in this paper to use the generalized cell mapping to locate strange 
attractors of dynamical systems and to determine their statistical properties. The 
cell-to-cell mapping method is based upon the idea of replacing the state space 
continuum by a large collection of state space cells and of expressing the 
evolution of the dynamical system in terms of a cell-to-cell mapping. This leads 
to a Markov chain which in turn allows us to compute all the statistical 
properties as well as the invariant distribution. After a general discussion, the 
method is applied in this paper to strange attractors of a variety of systems 
governed either by point mappings or by differential equations. The results 
indicate that it is a viable, effective and attractive method. Some comments on 
this method in comparison with the method of direct iteration will also be made. 
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1. I N T R O D U C T I O N  

In recent  years  the p h e n o m e n o n  of  s t range a t t rac to rs  has  rece ived  a great  

deal  o f  a t ten t ion  in the field o f  non l inea r  d y n a m i c s  and d y n a m i c a l  systems.  

The  l i tera ture  is too  vas t  to be quo ted  extens ive ly  here ;  m a n y  o f  the papers  

m a y  be found  referred to in Refs.  1-5.  The  bas ic  in t r igue  o f  this p h e n o m e n o n  

comes  f rom the obse rva t ion  tha t  whi le  a s t range  a t t rac to r  yields a chao t ic  

mot ion ,  the or ig ina t ing  sys tem cou ld  very  well  be ent i re ly  de te rmin is t ic  in 

nature.  N o t  on ly  is the p h e n o m e n o n  interes t ing phys ica l ly  and 
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mathematically, but it also appears in many different fields. Therefore, it 
deserves to be studied in great depth. 

In an unrelated direction, a method of cell-to-cell mapping for nonlinear 
system analysis has been introduced in the last few years. (6-12) Preliminary 
studies show that the method has a great potential as a tool for studying the 
global properties of nonlinear systems. The basic idea of cell-to-cell mapping 
is to consider the state space of a dynamical system not as a continuum but 
as a large collection of state cells and to express the behavior of the system 
in terms of an evoluation process of cell-to-cell mapping. Two kinds of cell 
mappings have been introduced and are being developed. The first kind has 
been called "Simple Cell Mapping" (SCM) in which a cell is allowed to have 
only one single mapping image. The second kind called "generalized cell 
mapping" (GCM) is a mapping where a cell under the mapping can have 
several image cells with a certain probability for each image cell. When a 
dynamical system is described in terms of a GCM, it leads naturally to a 
stationary Markov chain and the transition probability matrix determines 
completely the behavior of the system. Generalized cell mapping is discussed 
in Refs. 8 and 9. The method uses the theory of Markov chains extensively. 
Well-known books on that topic are Refs. 13-15. 

In this paper we link the topic of strange attractors to the topic of GCM 
by using the concepts and techniques of GCM to find the location, invariant 
distribution, and statistical properties of a strange attractor. First, in 
Section 2 we discuss the minimum cell set which covers a strange attractor. 
We then show in Section 3 how strange attractors can be linked very 
naturally to GCM. In the context of GCM a strange attractor will appear as 
an acyclic persistent group of a Markov chain. A strange attractor consisting 
of K separate pieces will appear as a persistent group of period K. We shall 
also discusses in Section 3 how to actually find the persistent group wich will 
represent a strange attractor and to determine its transition probability. 
Having the transition probability matrix of the Markov chain on hand, one 
can then easily calculate the invariant distribution and hence study the 
statistical properties of the strange attractor, such as the mean values, 
variances, standard deviations, moments of various orders, and correlation 
functions. This will be discussed in Section 4. We hope that the analysis 
given in Sections 3 and 4 will clearly demonstrate that the method of GCM 
is indeed a very natural tool to use when studying strange attractors. 

The purpose of the paper is to discuss the methodology of using GCM 
to study the statistical properties of strange attractors. However, in order to 
assess the viability and efficacy of the mthod, we also apply it to several 
specific problems in Sections 5 and 7-9. Some of the strange attractors are 
well known. Others are strange attractors whose existence or statistical 
properties have not been studied before. We shall mostly be concerned with 
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strange attractors of point mappings. In Section 9 we shall however study a 
strange attractor which is originated from a dynamical system governed by a 
differential equation. 

With regard to the Zaslavskii map studied in Section 8, we wish to cite 
here the work by Jensen and Oberman (5) in which a detailed and excellent 
study of statistical properties of strange attractors of Zaslavskii map is made 
by using a path integral method. In relation to Ref. 5, the present paper 
might be said to be more computationally oriented. 

In Section 6 we make some comments about the present method in 
comparison with the direct method of iteration. Besides comparing the 
computation effort required, we also point out the basic conceptual difference 
between the two approaches. 

With regard to partitioning a state space, the idea dates back, at least, 
to Kolmogorov, Tihomirov, and Sinai, connected with their study of system 
entropy; see, for instance, Refs. 16-18. The present method is based upon the 
same idea of partitioning the state space into cells. However, being a more 
computation-oriented rather than analysis-oriented method, its development 
follows a somewhat different line. With regard to the idea of using cells, the 
reader may also wish to refer to a very instructive paper by Shaw C19) in 
which the notion of cells of a minimum but finite size is also discussed. 

2. COVERING SETS OF CELLS FOR STRANGE ATTRACTORS 

Consider an N-dimensional point mapping 

x(n + 1) = c(x(n))  (2.1) 

where x(n) is an N vector. When a strange attractor exists for a point 
mapping, the sequence of the mapping points x(n) for sufficiently large n and 
beyond covers and stays in a specific domain of the state space without ever 
repeating itself. The precise coverage of strange attractors is only known for 
a very few cases. Also, for most strange attractors there seems to exist a 
cascade of finer and finer structure within the attractor. While this is the 
most intriguing feature of the strange attractors, because of the never-ending 
nature of the cascade it does not seem to be practical to determine the 
coverage and the structure exactly and explicitly in all the detail. 

As stated earlier, the basic idea of GCM is to divide the state space into 
a collection of a large number of cells. Let us assume that a cell state space 
has been set up. When referred to a cellularly structured state space, a 
strange attractor will reside inside a set of cells. We shall call this set the 
covering set of the strange attractor and denote it by Dsa.  It is always a 
finite set. In principle, it is a relatively simple matter to determine precisely 
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all the member cells of DsA by iterating the map with a sufficiently large 
number of times. However, in practice, the number of iterations required 
could be very large. For instance, for the well-known H6non-Pomeau map 
with a = 1.4 and b = 0.3 and using a cell size 0.01 • 0.00333, even after 
iterating 30-million times, one or two straggler members cells are still being 
discovered after every million iterations. Thus, other methods of generating 
strange attractors are desirable. 

3. PERSISTENT GROUPS REPRESENTING STRANGE ATTRACTORS 

A persistent group of a stationary Markov chain (13-15) of a GCM (8'9) 
has the property that each cell in the group communicates with every other 
cell of the group. This is also the property of the covering set of cells of a 
strange attractor. Thus, in the context of GCM a strange attractor can be 
expected to show up as a persistent group. A one-piece strange attractor will 
show up as an acyclic persistent group and a K-piece strange attractor will 
in general show up as a persistent group of period K. For this reason one 
could expect that it would be possible to use GCM to generate a cell set BsA 
which represents the strange attractor in question. We now describe how this 
can be done in principle and how to do this in a practical way. 

3.1. Basic Idea of Generating the Cell Set BsA 

Let cells be denoted by integer-valued N-vectors Z. Under mapping 
(2.1), a cell Z can have a number of image cells. ~8) Let this number be 
denoted by I(Z).  Let the ith image cell of Z be denoted by C~i)(Z ) and the 
complete set of the image cells of Z be denoted by A (Z). The probability of 
cell Z being mapped into an image cell Z '  will be denoted by Pz,z where 
Z '  C A(Z). We have, of course, 

~_. p z , z  = 1 (3.1) 
Z'eA(Z) 

A set of cells representing the strange attractor can be generated in the 
following manner. Let cell Z(1 ) be a cell in the set DSA. (On this aspect of 
how to start the procedure, a discussion will be given in Section 3.5.) An 
array MsA is set up to include the discovered member cells of BSA. 
Obviously, Z<I ) will be the first member of this array. Having Z~I), one can 
find all the I(Z~I)) number of image cells of Z~I ) and the associated 
probabilities. One of the image cells of Z(1) could be Z(1) itself. Others, if 
I(Z~I)) > 1, will be newly discovered cells of BSA. Let the number of new 
cells be m 1. These rn~ new cells will then be entered into the array MsA 
which has now 1 + rn~ members. 
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Next, we take the second member of MSA , say, Zt2 ), and find its image 
cells. Let m z of these image cells are not in MSA. These will then be added to 
the array MSA which has now 1 + ml + m 2 members. Next, we take the third 
member Z~3 ) of Msa, find its image cells, and update the array MsA. This 
process is continued until the image cells of the last member of the current 
set MSA are all found to be aleady in MSA and, therefore, no more updating 
of MSA will be needed. This set MSA is now closed and it is then the set BsA 
we are seeking. For convenience we denote the number of members in Bsa 
by N(BsA ). 

3.2. Limiting Probability of BsA and Invariant Distribution 

Having determined the membership of BsA and along the way also 
obtained Pz,z, Z CBsA, Z ' ~ A ( Z ) ,  we have on hand the transition 
probability matrix P of a Markov chain whose components Pi j ,  i , j  = 1, 2 ..... 

N(BsA ), denote the transition probability from cell j to cell i. It is then a 
straightforward matter to determine the limiting probability vector p of this 
persistent group with components P i ,  i = 1, 2 ..... N(BsA ). A very practical 
method of finding this limiting probability vector p is simply the power 
method (also known as the iteration method) which utilizes the fact that p is 
merely the eigenvector of P corresponding to the dominant eigenvalue 1. A 
simple interpretation of this limiting probability vector is that on the long- 
term basis the chance of the mapping process to land in cell Z(i ) is pi. 

This limiting probability vector is, of course, nothing but a discrete 
version of the invariant distribution of the strange attractor. (1'19) Thus, by 
using this method of GCM, the invariant distribution can be readily 
computed once the transition probability matrix is known, without the need 
of resorting to special methods, such as the Fokker-Planck equation and so 
forth. 

3.3. The Periodicity of BsA 

The persistent group may be an acyclic group or a periodic group, 
depending upon whether the period of BSA is 1 or >1. There are different 
ways of determining this particular property of a persistent group. The 
simplest is again the power method. Starting with an initial probability 
distribution P(0)= (1, 0, 0 .... 0) r and iterating a large number of times, if the 
probability distribution from step to step iteration shows a pattern of 
subgroup to subgroup migration, then BSA is a periodic persistent group of 
period larger than 1. Otherwise, it is an acyclic persistent group. Once the 
group is known to have a period larger than 1, its precise period and the 
limiting probability distribution within each subgroup can then be readily 
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determined. If  BSA is a persistent group of priod K, then the strange attractor 
is a periodic attractor of period K or higher and is consisted of K or more 
separate pieces in the state space. 

3.4, Comparison of DsA and BsA 

For a given cellularly structured state space there are DSA which is the 
minimum set of cells in which the strange attractor lies and BsA which also 
covers the strange attractor but is obtained by using the GCM method. In 
general, we cannot expect these two sets to be the same. Because of 
discretization of the state space, the method of GCM could bring into BsA 
extraneous cells which are not elements of Dsa.  However, DsA is contained 
in BsA. Moreover, we note that the extraneous cells will have extremely 
small limiting probabilities and, therefore, their presence in BsA will have a 
negligible effect on the computed statistical properties of the strange attractor 
by using BSA. 

3.5. The Starting Cell of the Procedure 

Here we make some comments on the selection of the starting cell for 
the generating process. In many cases the strange attractor results from a 
cascade of bifurcation. At each stage of bifurcation, as a system parameter is 
increased or decreased, a certain periodic solution becomes locally unstable 
and new solutions of higher period come into being. In such instances there 
are points, infinitely near these unstable periodic points, which are in the 
strange attractor. Thus, a cell containing one of these unstable periodic 
points can be used as the starting cell for the process described in Section 3.1 
to generate the persistent group. In any event, it is a simple matter to incor- 
porate a step in the generating process to test whether the starting cell does 
communicate with other cells of the group and, therefore, is indeed a member 
of a persistent group. 

3.6. Sampling Method for Implementation 

In Section 3.1 we have explained how the GCM method can be used to 
find, in principle, the set BsA. The method, however, requires finding all the 
image cells of a cell and the associated probability distribution. In general, 
this is a very difficult task for nonlinear mappings. Thus, as a practical 
matter, we need a viable method of implementation. Up to now we find the 
straightforward sampling technique to be a very effective one. For each cell, 
say, cell Z, we simply divide it into M subcells of equal size and compute the 
mapping images of the M center points of these subeells according to (2.1). 
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If M 1 image points lie in cell Zx, M 2 points lie in cell Zz,..., and M m points 
in cell Zm, then we assign 

I (Z)  = m, C(i)(Z) = Z i, Pz~, z 

This is an extremely simple and 

= m i / M ,  i = 1, 2,..., I (Z)  (3.2) 

effective method, applicable for any 
nonlinearity and can be used for point mappings of any dimension. 

4. STATISTICAL PROPERTIES OF STRANGE ATTRACTORS 

Most of the recent studies of strange attractors of specific point 
mappings involve repeated mapping to generate a large number of mapping 
points in order to demonstrate the existence of the strange attractor and to 
exhibit any fine structure which may exist within the attractor. While deter- 
mining the location of the strange attractor should be the first order of 
business, we are also interested in the strange attractor as a possible long- 
term response of the dynamical system. Since the response is chaotic it is 
natural to study the response properties in a statistical sense. To determine 
the statistical properties numerically one can use the straightforward method 
of repeated mapping. These statistical properties represent the time averages. 
This approach, while practical, is perhaps not particularly attractive because 
a very large number of iterations is usually required owing to the standard 
error of order N-1/2 associated with the process, N here being the sample 
size. 

Here we describe an alternative way via the GCM method which seeks 
the statistical properties of a strange attractor through spatial averages over 
the state space. Using the generating process of Section 3.1 we can find BSA 
and the associated transition probability matrix. This transition matrix 
determines completely the behavior of the persistent group and, hence, 
approximately the behavior of the strange attractor. We can expect that the 
accuracy of approximation will be improved if we use smaller cell sizes. In 
fact, the examples to be shown later indicate that with a reasonably small 
cell size the accuracy of approximation on the statistical properties is 
already quite satisfactory. 

Maximum and Minimum Excursions. First, having determined BSA, 
we can easily find the maximum and minimum excursions of the persistent 
group in each dimension of the state space. 

Mean Value p. Let x(k ) be the position vector of the center point of 
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cell Z~k ). Within the accuracy of discretization of the state space into cells, 
the mean value vector of the response is then given by 

N(BsA) 

~ = Z X(k)Pk (4.1) 
k = l  

where Pk is the limiting probability of cell Z(k ) . 

Central M o m e n t s  n3ala2...a N. The central moments are given by 

N(BsA) N 

m~,,~2...~u = ~. ~ (XJ~k)--laJ)~'JPk (4.2) 
k - 1  j = l  

where xiek) is the j t h  component of x~k ) and/2j is the j t h  component of g. 

Central Correlation Function Matrix /~(k). Let R(k) be the central 
correlation function matrix between (x(n) - g) and (x(n + k) - g) and ~j(k)  
be its (i, j) th component, representing the central correlation between xj(n) 
and xi(n + k). Then we have 

N(BsA) N(BsA) 

/~t/(k)= ~ '  ~ (Xm,--12~)pl2pm(Xj(m,--#]) (4.3) 
l 1 m = l  

where ~'tm'(k) is the (/, m)th component of pk, the kth power of the transition 
probability matrix P. 

This completes the general discussion on using the GCM method to 
obtain statistical information of a strange attractor. In the next few sections 
we apply the general discussion to various specific problems. 

5. A STRETCH-CONTRACTION-REPOSITION MAP 

We first consider a very simple "stretch-contraction-reposition" map (4) 
which maps a unit square onto itself: 

x2(n + 1) =)~lx2(n) mod 1 

xl(n + 1) = )~zxl(n) + xz(n ) -- ~- lx2(n  + 1) 
(5.1) 

where ~ is to be a positive integer and /~2 a positive number less than 1. This 
map has a strange attractor for certain values of ,t, 1 and )-2. In this section we 
use the GCM method to locate the strange attractor and to determine its 
statistical properties. 

Let the state space of the unit square be divided into N1 • N2 cells 
where N 1 and N 2 a r e  the numbers of intervals in the x I and x 2 directions. We 
shall present here only the results for the case 21 = 3 and h a--- 1/4. The 
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Fig. 1. The persistent group representing the strange attractor o f  map  (5.1)  for 21 = 3 and 
~2 = 1/4. Nx = N  2 = 125. A l s o  representing 1 /16 of  the persistent group cover ing  the lower 
left corner o f  the unit square for N 1 = N 2 ~ 500.  

number o f  sampling points used within each cell is 5 • 5. (See the discussion 
given in Section 3.6.) Figure 1 gives the set Bsa  for N 1 = N 2 = 125. Each 
point in the figure represents a member cell of  BSA. The figure clearly shows 
the tripartition of  the unit square and the further tripartition within each one- 
third o f  the square. If we use N 1 = N 2 = 500, we can disclose a much  finer 
structure o f  the strange attractor in the form of  a further tripartitioning of  the 
covering set. In fact, when we relabel Fig. 1 with the abscissa covering 
0 ~< x I < 1/4 and the ordinate covering 0 ~< x 2 < 1/4 such as shown by the 
numbers in parentheses, then that figure also gives exactly the set BSA of  the 
strange attractor for the lower-left corner of  the unit square covering an area 
equal to 1/16. This clearly demonstrates  the scale invariant character of  the 
structure of  this strange attractor. 

Next,  we examine the statistical properties o f  the strange attractor. It 
turns out that because of  the especially simple nature o f  the mapping the 
statistical properties can be evaluated analytical ly and exactly. Let 

U) = 2~_,+1 ~ ( j - -  1) k- '  (5.2) 
j = l  
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Then the moments  m,<,o , a 1 >~ 1, are given by 

[al-1 r'(al)m ^1/[1--g (~ (5.3) real'0 = /=0Z ]2a( l ) l,UJ/t (~1)1 

where the moments  m,1,,,2 are defined by a formula similar to (4.2). The 
moment  mo, 0 is logically taken to be 1. Similarly, we find 

1 
rn0,.2-- a2 + ~  (5.4) 

1 
real'a2 12 2 + 1 m~"~  (5.5) 

F rom these 
deviations as 

general formulas we obtain the means and the standard 

~,x--1 1 
Ul - 221( 1 _ 2z ) , /~z = T (5.6) 

I /~ - 1 I 1/2 1@2 1 1/2 
O"1= 122~(1 -- )1.~) ' a 2 =  (5.7) 

The central moments  n~.l,~ 2 are given by 

where 

_ I 0 i f a z i s  odd 

real a2 = t 1 
2~2(a2 + 1) rfi"l'~ i f a  2 is even 

(5.8) 

o 

rfi.l,o = ~ (_1)~,  z 1 •lal--I m,,0 (5.9) 
/=0 

Next, we turn to the central correlation function matrix R(1). We have 

Some other 
derived. 

1) 2 1 
/~11(1 ) -  l~-~-(i ----~) ? / ~ ' 2 ( 1 ) -  2~ -- ' 

(5.1o) 
/~21(1) = O, / ~ = ( 1 ) -  1 

12,~ 1 

analytical expressions for /~ij(k) for k > 1 have also been 

Having the exact values for the moments  and correlation functions, we 
can assess the accuracy of the results otained by using the G C M  method as 
described in Section 3. The results are given in Table I. For the G C M  results 
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Table I. Statistical Data for the Map (5.1) with A 1 = 3 and A 2 = 1 /4  

106 iterations (with 10 ~ 
GCM Exact value preliminary iterations) 

N l = N 2 = 10 50 100 Initial state: x~ = x 2 = 
N(Bsa ) 90 1799 6000 0.001 0,2 0.4 

~i 0.4455 0.4444 0.4445 4/9 ~ 0.4444 0.4444 0.4446 0.4440 
~2 0.5000 0.5000 0.5000 1/2 = 0.5 0.4999 0.5002 0,4995 
aj 0,2767 0.2809 0.2811 (32/405) ~n ~ 0.28It  0.2808 0.2812 0.2811 
a2 0.2872 0.2886 0.2887 (1/12) t/2 ~ 0.2887 0.2885 0.2889 0.2887 

r~2. o 0.0766 0.0789 0.0790 32/405 ~ 0.0790 0.0789 0.0791 0.0790 
r~a.~ -0.0031 0.0006 -0.0004 0 0.0001 0.0002 0.0000 
r~o, 2 0.0825 0.0833 0.0833 1/12 ~ 0.0833 0.0832 0.0835 0.0833 

rh3, o 0.0001 0,0001 0.0000 0 0.0001 -0.0000 0.0000 
F/~2,1 -0.0001 0,0000 -0,0000 0 0.0000 0.0000 0.0000 
r~,  2 0.0000 0.0000 0.0000 0 0.0000 0.0000 0.000 l 
rho. 3 .0.0000 -0.0000 .0.0000 0 0.0000 -0.0000 0.0001 

r~,, o .0096 0.0104 0.0104 29184/2788425 ~ 0.0105 0.0103 0.0105 0.0105 
rh~,l -0.0003 0.0001 ~0.0000 0 -0,0000 0.0000 0.0000 
rh2, 2 0.0067 0.0066 0.0066 8/1215 ~ 0.0066 0.0065 0.0066 0.0066 
rh~, 3 .0.0004 0,0002 .0.0001 0 -0.0000 0.0000 0,0000 
rho. 4 0.0121 0.0125 0.0125 1/80=0.0125 0.0124 0.0125 0.0125 

R ~ ( I )  0.0180 0.0201 0.0196 8 /405~0 .0198  0.0196 0.0200 0.0198 
/~2~(1) -0.0056 0.0006 -0.0006 0 -0.0000 0.0001 0.0001 
R~2(1) 0.0714 0.0740 0.0740 2 /27~0 .0741  0.0738 0.0742 0.0741 
R ~ ( I )  0.0255 0.0282 0.0276 1 /36~0.0278 0.0277 0.0280 0.0278 

Rn(2)  -0.0012 0.0052 0.0042 2/405 ~ 0.0049 0.0050 0.0051 0.0050 
R2~(2) 0,0008 0,0011 0.0001 0 -0,0002 0.0000 0,0001 
R12(2) 0.0419 0.0434 0.0432 7/162 ~ 0.0432 0,0431 0.0434 0.0432 
R22(2) 0.0025 0.0097 0.0085 3/324 ~ 0.0093 0.0093 0.0094 0.0093 

Rn(3 )  0.0002 0.0022 0.0012 1/810 ~ 0.0012 0.0011 0.0013 0.0013 
/~2~(3) 0.0007 0.0006 .0.0001 0 -4).0000 0.0001 0.0000 
Rt2(3) 0.0126 0,0t91 0.0183 111/5832~0.0190 0,0192 0.0192 0,0190 
/~22(3) 0.0015 0.0042 0.0030 9/2916~0.0031 0.0029 0.0031 0.0032 

CPU time 
in s ec f  7.8 166.3 563.3 4642.7 4386.4 4435.3 

'~ VAX i1/750 CPU time, VAX 11/750 is a multi-user system. The CPU time is, therefore, 
dependent upon the number of users during the time of computation. 

822/38/3-4-21 
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we show three sets of data; they are, respectively, for N 1 = Nz = 10, 50, and 
100. The number of samplings taken in each cell is 5 • 5 in all cases. One 
sees that the case N 1 - - N  2 = 100 produces excellent results with deviations 
no bigger than two units in the fourth decimal place except r~l, 1, /~11(2), 
/~2z(2), and/~12(3). The case N~ = N2 = 50 produces reasonably good results 
except/~;j(3). It is also remarkable that even the very coarse cell structure of 
N~ = N 2 = 10 produces good results for the lower-order moments and Rij(1). 

In the table we also show the statistical values evaluated by direct 
iteration. Here an initial point was first iterated 1000 times, and then the 
various statistical quantities were computed by using the next 1 0  6 iterations. 
The table shows three sets of data of this kind for three different initial 
points. A comparison between this conventional iteration method and the 
present GCM method will be made in the next section. 

6. SOME COMMENTS ON THE GCM METHOD AND THE 
ITERATION METHOD 

When Table I is examined, one notes that the accuracy of the iteration 
method using 106 iterations is approximately comparable to that of the 
GCM method using 100 • 100 cells for the unit square and 5 • 5 sampling 
points for each cell. On the other hand, so far as the computation effort is 
concerned, the GCM method has an advantage of 1 to 8 in CPU time. 

While the computation time comparison is interesting, it is perhaps 
more important to note the basic difference between the two methods. First, 
consider the iteration method. If we regard an infinitely long mapping 
trajectory covering the strange attractor as a random process, then the 
trajectory generated from a specific initial point is merely a sample of finite 
length of this process. Each initial point generates one of such samples. This 
is exhibited by the three quite different sets of statistical data generated by 
three different initial points in Table I. The standard errors of the data are, in 
general, of the order N-1/2, with N being the sample length. To obtain a set 
of truly meaningful statistical data based upon, say, 106 iterations, we should 
probably take many samples of this length and then take the ensemble 
averages. This would, of course, require even a greater computational effort. 

On the other hand, the GCM method is essentially a spatial averaging 
process. The error involved is, therefore, of an entirely different kind. It 
results from two processes of discretization: partitioning of the state space 
into cells and the further subpartitioning of a cell in order to compute the 
transition probability matrix. Once the transition probability matrix has been 
determined, statistical data can be computed to any desired accuracy without 
undue computational effort. Thus, the error of the GCM method is from 
discretization rather than due to finite sequential statistical sampling as in 
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the iteration method. We do not have a Complete analysis of the GCM 
discretization error for the map of (5.1), but the following partial results may 
give us some insight to the error involved. 

Let 21 ----- 3 and 2 2 = 1/4. Consider a partitioning of the unit square into 
N1 • N2 cells. Let S 1 • $2 denotes the number of sampling points taken 
within each cell for the purpose of computing the transition probability 
matrix. 

(1) For any N 1, N2, and $1, if S 2 is a multiple of 3, then the 
persistent group BSA , representing the strange attractor, is consisted of 
vertical strips with a uniform limiting probability distribution in the x2 
direction along each strip. Therefore, 

~u2)oc M = I /2 (6.1) 

which is also the exact value for r z. 

(2) If the unit square is partitioned into (3 • 4") • 1 cells and (3 X 3) 
sampling points are taken within each cell, then it is possible to derive 
analytically the following expression for ~1, based upon the GCM method, 

9 -- 8(1 - 4") 
Q'/1)GCM = 18 X 4 n (6.2) 

As n-~ oo, one recovers the exact value 

Q-/l)exact -=- 4/9 (6.3) 

The error for a specific value of n and with (3 • 3) sampling is, therefore, 

1 
error of (/q)~c M - 18 • 4" (6.4) 

Taking now N =  3 X 4 n X 3 X 3 iterations as the comparable 
computation required in this case for the direct iteration method, the 
statistical error O(N-1/2) involved will be of the order 2-n. This error is seen 
to be much worse than the error of the order 4 -n for the GCM method. 

Considering all the factors, one might perhaps say that the GCM 
approach is, in a sense, a more direct and robust way of evaluating the 
statistical properties of strange attractors. We also believe that the method is 
a more appropriate and fruitful one to use when we wish to study other 
properties of strange attractors such as Hausdorff dimension, Liapunov 
exponents, and entropy, etc. 
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7 .  H f : N O N - P O M E A U  M A P  

As the next problem we examine the H~non-Pomeau map: 

x~(n + 1) = 1 + x2(n) -- a[x~(n)] ~ 

x2(n + 1) = bXl(n) (7.1) 

Simo c~ has given an excellent discussion of  the complex behavior of  this 
map for various values of  the parameters a and b. We shall study the 
statistical properties of  two particular cases, namely: the case of  a = 1.4 and 
b = 0.3 and the case of  a = 1.07 and b = 0.3. 

7 . 1 � 9  T h e  C a s e  a = 1 . 4  a n d  b = 0 . 3  

For this case there is a strange attractor. In Figs. 2 and 3 we show two 
prsistent groups Bs~ obtained by using G C M  method. For Fig. 2, N~ = 300 

. 4  - 

x 2 ....... ~=,,,. ~_-, =~,: ....... 

. . . . . .  

',[~ :, '::<%} j>:. 

�9 , ,  -,~ = J i l t  b ,  

% ' i :  " = ~  

O t 'r 
0 - -  L ~, 

. _ . < S - -  - .  
E 

E ~ 1 . 2  . . . .  f fJ  

~.l-. 

- . 4  i I ] .... I L, ,,1 ,, I 1 I I 1 l 
-1.5 -.75 0 .75 1.5 

Fig.  2. The persistent group representing the strange attractor of H+non-Pomeau map for 
a = 1.4 a n d  b = 0.3.  N 1 = 3 0 0  c o v e r i n g  - -1 .5  ~ x l  <~ 1.5; N~ = 240  c o v e r i n g  - -0 .5  ~ x z <~ 0.4.  
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and N 2 = 240 are used to cover - 1 . 5  ~ X  1 ~ 1.5 and --0.4 ~ x  2 ~< 0.4 while 
in Fig. 3 N 1 = 2200 and N 2 = 1760 are used for the same ranges of  x~ and 
x 2. Figure 4 is a magnified small region of  Fig. 3 covering 0.6 ~< x I ~< 0.9 and 
0.1 ~< x 2 <~ 0.2; it demonstrates the capability of  the G C M  method to disclose 
the finer structure of  the attractor. 

Having located the persistent group, we can compute the limiting 
probability distribution and various statistical quantities. They are given in 
Table II. Since we have no analytical result to compare with, we list here 
some statistical quantities obtained after 10 millions iterative mapping steps 
for comparison. 

7.2. The Case of a = 1 . 0 7  and b = 0 . 3  

For this case there is a strange attractor which is consisted of  four 
separate pieces. (l v) Figure 5 shows the persistent group (period 4) 
representing the strange attractor when N 1 = N  2 = 1 0 0 0  are used to cover 
- 1 . 5  ~<x 1 ~< 1.5 and - 0 . 5  ~<x2 ~< 0.5. Table III  shows certain statistical 
properties of  this persistent group as well as those of  the persistent group 
obtained by using a coarser cell structure N~ = N2 = 500. 

4 t 
i= 

. 2~  

o ]_ 
! 

i ~ 

- . 2 ]  

- . 4  - -  
-1. -.6 0 .6 .9 1.5 

x 1 

Fig. 3. The persistent group representing the strange attractor of Henon-Pomeau map for 
a = l . 4  and b=0.3. N1=2200 covering 1,5~x1<~1.5; Nz=1760 covering -0 .4~  
x 2 ~ 0.4. 
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z : .  
. - : : .  

. 6  . 9  
x 1 

A magnified portion of Fig. 6. 0.6 ~< x~ ~< 0.9; 0.1 ~< x 2 <~ 0.2. Fig. 4. 

8. ZASLAVSKII MAP AND A SIMPLE IMPACTED BAR MODEL 

Next, we consider the Zaslavskii map (5'21~ which is taken here to be 

x(n + 1) = x(n) + y(n + 1) mod 1 
(8.1) 

y(n + 1) = )~y(n) + k sin[2 x(n)] 

In physics the mapping has been used to study the motion of charged 
particles or the Fermi acceleration problem. This map has extremely 
complex behavior and for certain ranges of  values of  2 and k it possesses 
strange attractors. 

In engineering a simple mechanical system has been studied. {22'23) It 
consists of  merely a rigid bar hinged at one end and acted upon at the other 
end by a periodic impact force of fixed magnitude and direction. The motion 



Statistics of Strange Attractors by Generalized Cell Mapping 751 

Table II. Statistical Data of a Strange Attractor of H6non-Pomeau Map 
with a = 1.4 and b = 0.3 (GCM: covering - 1 . 5  ~< x 1 ~< 1.5, - 0 . 4  ~< x z ~< 0.4) 

GCM 

N~•  3 0 0 •  3 0 0 •  3 0 0 •  1500• 1200 

Sampling 5 • 5 9 • 9 13 • 13 5 X 5 

N(Bsa ) 2812 3038 3096 19083 
Iteration 

10 7 

]ll 0.2557 0.2559 0.2558 0.2566 0.2569 
P2 0.0767 0.0768 0.0767 0.0770 0.0771 
cr 1 0.7219 0.7217 0.7218 0.7212 0.7210 
cr z 0.2166 0.2165 0.2165 0.2164 0.2163 

42, 0 0.5211 0.5209 0.5210 0.5101 0.5199 
r~l, I 0.0520 -0.0520 ~).0521 -0.0500 -0.0488 
r~o, z 0.0469 0.0469 0.0469 0.0468 0.0468 

n~3, o -0.1798 -0.1798 -0.1797 -0.1838 -0.1860 
#i2,1 0.0317 0.0317 0.0317 0.0314 0.0309 
r~l, 2 -0.0230 -0.0229 -0.0229 -0.0233 -0.0234 
rho, 3 -0.0049 -0.0049 -0.0049 -0.0049 -0.0050 

F/~4, 0 0.5682 0.5680 0.5679 0.5720 0.5735 
r~3, ~ -0.0751 -0.0751 -0.0752 -0.0749 -0.0744 
r~2, 2 0.0319 0.0319 0.0319 0.0322 0.0323 
r~l, 3 -0.0005 -0.0005 -0.0005 -0.0003 -0.0002 
r~o, 4 0.0046 0.0046 0.0046 0.0046 0.0046 

/ ~ ( 1 )  -0.1734 -0.1735 -0.1737 -0. I662 -0.1628 
R2~(1) 0.1563 0.1563 0.1563 0.1560 0,1560 
/~2(1) 0.0398 0.0398 0.0398 0.0387 0,0387 
/~22(1) -0.0156 -0.0156 -0.0156 -0.0150 -0,0147 

/~11(2) 0.1327 0.1327 0.1328 0.1291 0.1288 
/~2i(2) -0.0520 -0.0520 -0.0521 -0.0499 -0.0488 
R~z(2) -0.0610 -0.0610 -0.0611 -0.0606 -0.0600 
R22(2) 0.0119 0.0119 0.0119 0.0116 0.0116 

Rj 1(3) -0.2035 q3.2034 -0,2036 -0.2022 -0.2004 
/~21(3) 0.0398 0.0398 0,0398 0.0387 0.0387 
/~lz(3) 0.0115 0.0116 0.0117 0.0093 0.0084 
R22(3) -0.0183 -0.0183 -0.0183 -0.0182 -0.0180 
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0 r �9 ~ 
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IV 

l I I  

I 
- O ' - I . 5 -  E) .e  x i l . g  

Fig. 5. The persistent group representing the four-piece strange attractor of the H6non- 
Pomeau map for a = 1.07 and b =0.3. N~ = N  2 = 1000 covering --1.5 ~<x~ ~ 1.5 and --0.5 ~< 
x2 ~ 0.5. 

of the bar may also be resisted by a linear rotational damper at the hinged 
end. For this simple mechanical system the equation of motion can be 
integrated exactly over one period of the forcing, leading to the following 
point mapping 

1 - -  e 20. 
xx(n + 1) = x i ( n )  4 2ge_ZO , x2(n + 1) 

x2(n + 1) = - e - 2 "  [a sin xl(n ) -- x2(n)] 

(8.2) 

where x] and x 2 are respectively, the angular displacement and the angular 
velocity of the rigid bar,/~ is a parameter of damping and a is a parameter 
representing the strength of the impact force. 
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Table III. Statistical Data on the Four-Piece Strange Attractor 
of the H6non-Pomeau Map with a = 1.07 and b = 0.3 

753 

N 1 = N  2 = 500 N t = Ne = 1000 
Sampling 5 • 5 Sampling 5 X 5 

Piece I 

Piece II 

Piece 1II 

Piece IV 

N(BsA ) 104 206 
#t 0.8903 0.8891 
#2 -0.2006 4).2009 
a t 0.0824 0.0810 
a 2 0.0184 0.0181 

N(Bsa ) 127 223 
#t 1.2411 1.2435 
#2 -0.0180 4).0156 
a t 0.0201 0.0176 
a 2 0.0435 0.0409 

N(BsA ) 130 272 
#~ -0.0553 -0.0545 
#z 0.2679 0.2669 
a I 0.1406 0.1397 
a 2 0.0246 0.0245 

N(BsA ) 83 138 
fll -0.6670 ~).6694 
#2 0.3723 0.3728 
(71 0.0633 0.0607 
02 0.0059 0.0054 

W h i l e  (8 .1 )  a n d  (8 .2 )  a r e  d e r i v e d  s e p a r a t e l y  to  t r e a t  t w o  d i f f e r e n t  

p h y s i c a l  p r o b l e m s ,  t h e y  a re  o n e  a n d  t h e  s a m e  m a p p i n g .  I n d e e d ,  i f  we  se t  

xdn ) = 2zrx(n)  - -  ~z, 

47rge - 2, 
Xz(n)-- 1--e  -2" y(n), 

x,(n + 1) = 27~x(n + 1) - ~r 

47r/te - 2 .  
x2 (n  + 1) - 1 - - e  - 2 "  y(n + 1) 

(8.3) 

we c a n  r e a d i l y  t r a n s f o r m  (8 .2 )  i n t o  (8 .1 )  a n d  v i c e  v e r s a ,  w i t h  t h e  f o l l o w i n g  

r e l a t i o n s  b e t w e e n  t h e  t w o  se t s  o f  p a r a m e t e r s :  

1 - - e  -2~ 
�9 ~ --~ e -2~ ,  k - a 

4zr# 

1 - 2 z c k  In 2 
# = - - - = - l n ~ ,  a - -  

2 1 

(8 .4 )  
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The transformation (8.3) is, of course, formally a trivial matter. However, 
the identification of (8.1) to a simple mechanical model of  (8.2) could 
perhaps offer a new way of interpreting the complex results of  the mapping, 
a way which is both more elementary and easier to visualize and appreciate, 

A fairly extensive study of the statistical properties of  strange attractors 
of  the Zaslavskii map has been carried out using the GCM method. Here we 
shall report three sets of  data. For all the results reported below 5 • 5 
sampling points per cell are used. Other choices of  sampling points per cell 
seem to lead to the same results within about 2 • 10  - 3  as  long as there are 
at least 3 • 3 sampling points in each cell. 

8.1.  The Case ,~ = 0.1 and k = 1 .4  

Figure 6 shows the persistent group representing the strange attractor 
obtained by the GCM method using N 1 = N 2 = 200 covering 0 ~< x ~< 1 and 

Y 

-1 

: i  i !~  > 

................. .......... i iii .... ....... 

x : :  . . . . . .  : : :  

. . . .  : :  = , : � 9  . . : : . :  . .  

ii 
m . = : : : :  . . . . . .  

I 1 1 I 
f f  e . E  ; ) . 4  e . 6  9 . 8  1.~) 

X 
Fig. 6. The persistent group representing the strange attractor of Zaslavskii map for ). = 0.1 
and k- -  1.4. N 1 = N ~ 2 0 0  covering 0 ~ x ~ l  a n d - 2 ~ y ~ < 2 .  
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Table IV. Statistical Data of a Strange Attractor of Zaslavskii Map 
with A = 0.1 and k =  1.4 (GCM: Covering 0 ~<x~< 1, - 2  ~< y~<2) 

GC M  
106 iterations (with 10 ~ 
preliminary iterations) 

N 1 = N 2 

N(BsA) 

Initial state 
20 100 200 x = y = x = y = 

I56 1208 3448 0.001 0.2 
x = 0.3, 
y =  0.5 

/.t2 
(7 I 

0" 2 

r~2,0 
rhl,l 

rno,2 

0.5000 0.5000 0.5000 0.4998 0.4998 
0.0000 0.0000 -0 .0000 -0 .0000 -0 .0000 
0.2504 0.2465 0.2484 0.2489 0.2488 
0.9677 0.9508 0.9469 0.9486 0.9479 

0.0627 0.0608 0.0617 0.0619 0.0619 
0.0069 0.0087 0.0060 0.0058 0.0059 
0.9365 0.9039 0.8966 0.8998 0.8986 

rh3, o -0 .0000 -0 .0000 -0.0000 -0 .0000 -0.0000 
rh2 ,1  -0 .0000 -0 .0000 0.0000 0.0001 -0 .0000 
r~ ,  2 -0.O000 -0.0000 -0 .0000 0.0003 0.0002 
rho, 3 -0 .0000 0.0000 0.0000 -0.0001 0.0003 

rhn,o 

/'~3,1 
F~2,2 
rhl.3 

F/~o, 4 

/~,,(1) 
~g2,(1) 
/~,2(l) 
g2dl) 

/ ~ ( 2 )  

/~21( 2 ) 
g~d2) 
~(2)  

~.(3) 
~21(3) 

R22(3) 

0.0087 0.0085 0.0087 0.0087 0.0087 
-0.0006 -0.0009 -0.0013 -0.0012 -0.0012 

0.0382 0.0371 0.0371 0.0372 0,0371 
0.0438 0.0481 0.0457 0.0437 0.0437 
1.3969 1.3410 1.3256 1.3306 1.3285 

0.0037 0.0022 0.0035 0.0039 0.0038 
-0.1919 -0.1857 -0.1853 -0 .1870 -0.1869 

0.0316 0.0398 0.0411 0.0408 0.0405 
0.0086 -0 .0200 -0.0123 -0.0054 -0.0058 

-0.0075 -0.0081 -0.0087 -0 .0084 -0.0084 
-0 .0262 ~0.0163 -0.0203 -0.0226 -0 .0222 
-0.0083 -0 .0074 -0 .0100 -0.0103 -0.0104 
-0.1866 ~3.2362 -0.2359 -0.2359 -0.2350 

-0 .0009 -0.0006 -0.0001 0.0001 0.0001 
0.0401 0.0471 0.0486 0.0480 0.0480 

-0 .0029 -0.0154 -0.0131 -0 .0140 -0.0138 
-0.0059 0.0276 0.0409 0.0402 0.0396 

0.5004 
-0.0020 

0.2492 
0.9474 

0.0621 
0.0062 
0.8976 

-0.0000 
0.0000 

~3.0002 
0.0025 

0.0087 
-0.0011 

0.0372 
0.0437 
1.3263 

0.0038 
~).1870 

0.0404 
4).0063 

-0.0084 
-0.0222 
-0.0106 
-0.2335 

0.0001 
0.0477 

-0.0139 
0.0403 

CPU time 
in sec. 73.9 597.7 1715.4 4812.0 4635.2 4723.8 



- 2  ~< y ~ 2. The stat is t ical  propert ies  of  the persistent groups obtained by 
using various cell sizes are shown in Table IV. For  compar ison  three sets of  
results obta ined from one mil l ion i terative mapping steps are also shown. 
Considering the fact that  ~1 should have a value 1/2 and P2 and all the third- 
order central  moments  should be zero, the results seem to suggest that  those 
from G C M  with N 1 = N  2--- 100 or 200 might  be more rel iable than those 
obtained from 106 iterations. It is interesting to see that  even the coarse cell 
structure of  N 1 = N 2 = 20 leads to very decent results except for the higher- 
order correlat ion functions. For  this problem we also happened to have the 
computa t ion  time required for various cases and the da ta  are shown at the 
bot tom of  Table IV. 

8.2 .  The Case ,~ = 0 . 0 0 1  

c~ 
E 

Shown in Fig. 7 are (mo,z/k  2) values vs. k for 2 = 0.001, where mo, 2 is 
the second moment  with respect  to y. The values are computed  with the 
increment  of  k equal to 0.05. The da ta  points  are l inked by straight  line 

. 4 6  

/ 
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Fig. 7. The value of mo,2/k 2 vs, k for the strange attractors of Zaslavskii map with 
2=0.001. In all cases NI=N2=200  covering 0~<x~<l and -15~<y~15,  and 5 •  
sampling points used in each cell. 
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segments in order to exhibit the general pattern of  the variation. These G C M  
data may be compared with those shown in Fig. 5 of  Ref. 5. In particular, 
they compare very well with those in Fig. 5 of  Ref. 5 designated as iterative 
mapping results. At k =  10, 11, and 12 the G C M  data also exhibit the 
special character mentioned by Jensen and Oberman.(5) 

8.3.  Two Cases Where k < 1 

In most studies of  strange attractors of  the Zaslavskii map, the value of  
k is taken to be > I. In this section we present tWO cases where k < 1. For  
the discussion of  this section we use the mapping (8.2) and use / l  and a as 
the system parameters, instead of  2 and k. The statistical data refer to x I and 
x 2 and should be interpreted accordingly. 

First consider the case/~ = 0.37r and ct = 9, corresponding to 2 = 0.1518 
and k = 0.6445. Shown in Fig. 8 is the persistent group representing the 

2~0 

x 2 

8. 

IIdj 

42 0.13 xl 3. I 42 

Fig. 8. The persistent group of period 2 representing the two-piece strange attractor of the 
simple impacted bar model with ~t=0.37r and a=9 .  N~ =N2=500 covering --3.142~< 
x l~<3.142and-2~<x 2~<2. 
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Table V. Statistical Data of Strange Attractors of the Impacted 
Bar Model with p = 0 . 3 ,  and a = 9, and IJ = 1 and o = 9.2 

~ =  1, a = 9.2 

= 0.3~, a = 9 Attractor A Attractor B 

Iteration Iteration Iteration 
GCM 3 X 105 GCM 3 • l0 s GCM 3 • l0 s 

#2 
Gl 

02  

Complete motion Complete motion Complete motion 
-0.0000 ~0.0000 0.3272 0.3263 -0.3272 ~).3263 
-0.0000 0.0000 ~3.0000 0.0000 0.0000 0.0000 

1.6680 1.6685 1.6335 1.6338 1.6335 1.6338 
1.0974 1.0970 1.0169 1.0171 0.0169 1.0171 

Piece I alone Piece I alone Piece I alone 
~1 1.6204 1.6197 1.9471 1.9463 1.2926 1.2943 
~2 1.0936 1.0940 1.0140 1.0143 1.0141 0.0144 
ol 0.3973 0.3965 0.1075 0.1078 0.2783 0.2790 
oz 0.0916 0.0920 0.0924 0.0926 0.0541 0.0542 

strange attractor obtained by using N I = N 2 = 5 0 0  to cover -3 .142~< 
x 1 ~< 3.142 and - 2  ~< x 2 ~< 2. The persistent group is of  period 2 representing 
a strange attractor of  two pieces, one in the first quadrant and one in the 
third. Some statistical data are shown in Table V where the first four data 
rows are for the complete strange attractor as one motion and the next four 

1.12~ 

x 2 

Piec i f 

0.9s 
0.860 I. 7 4 4  

x 1 

1 . 1 2 8  

x 2 

12 2 . 1 2 9  
x 1 

Fig. 9. Persistent subgroups representing Piece I of Strange Attractor A and Piece I of 
Strange Attractor B for the impacted bar model with 11 = 1 and a = 9.2. 
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data rows are for Piece I (one in the first quadrant) taken alone. Of course, 
Piece I by itself is strange attractor of  the system under the G 2 mapping. 
Also shown for the purpose of  comparison are some statistical data obtained 
by iterative mapping; the agreement is excellent. 

Next, we consider the case / x=  1 and a =  9.2, corresponding to 
2 = 0.1353 and k = 0.6330. For this case there are two strange attractors of  
priod 2, to be, respectively, designated as attractor A and attractor B. Again, 
each is consisted of  two pieces, Piece I in the first quadrant and Piece II in 
the third quadrant. Shown in Fig. 9 are the pieces in the first quadrant. The 
statistical data for these two attractors are shown in Table V. Some data 
obtained by iterative mapping are also shown for the purpose of comparison; 
the agreement is again excellent. 
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Fig. 10. The persistent group represer~ting the strange attractor o f  the forced Duff ing  sys tem 
(9.1)  with k = 0.05 and B = 7.5. N 1 = N  2 = 100 cover ing  1 ~<x ~ 4 and --6 ~ dx/dt ~ 6. 
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9.  A D U F F I N G  S Y S T E M  U N D E R  P E R I O D I C  F O R C I N G  

As the last application we consider the strange attractors of systems 
governed by differential equations. Here we examine a class of Duffing 
systems under periodic forcing (24) governed by 

d2x dx 
dt 2 + k ~ -  + x3 = B cos t (9.1) 

The strange attractors of such a differential system can again be studied by 
using the GCM method as described in Section 3 after a cellularly structured 
phase plane has been introduced. The only difference lies in the way by 
which the image cells of a cell are computed. With point mappings it is a 
simple matter to compute the image cell of each sampling point. For systems 
governed by differential equations we need, however, to integrate numerically 
the equation over one period, here 2n, in order to obtain the image cell. 

Shown in Fig. 10 is the strange attractor for the case k = 0.05 and 
B = 7.5. Here N 1 = N 2 = 100 are used to cover 1 ~ x ~< 4 and - 6  ~< dx/d t  <. 6 
and 5 • 5 sampling points are used in each cell. This GCM result may be 
compared with Fig. 3 of Ref. 24. The GCM mean values and the standard 
deviations of this strange attractor, considered only at discrete time 2n7c, are 
shown in Table VI where they are compared against some data obtained 
from numerically integrating the equation over 10 4 and 10 5 periods. 

10 .  C O N C L U D I N G  R E M A R K S  

In this paper we have presented an alternative way to study the strange 
attractors by using the cell-to-cell mapping concept and Markov chain 
techniques. It is a simple and yet effective method. The statistical data 
obtained by this method seem to be quite reliable. Hopefully, the method 

Table VI. Statistical Data of the Strange Attractor of the 
Forced Duffing System with k = 0.05 and B = 7.5 

Numerically Integrating 
over 

GCM 10 4 per iods 105 periods 

fll 2.5777 2.5732 2.5755 
f12 0.3266 0.3150 0.3155 
a~ 0.4694 0.4696 0.4684 
a2 2.1777 2.1807 2.1664 
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might also offer us a more attractive approach to follow other than the direct 
iterative procedure, when we wish to evaluate numerically other properties of  
strange attractors such as the Hausdorff dimension, Liapunov exponents and 
entropy. 

ACKNOWLEDGMENTS 

This material is based upon work supported by the National Science 
Foundation under grant No, MEA-8217471. The authors also wish to thank 
two referees for their many helpful comments. 

REFERENCES 

l. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New 
York, 1982). 

2. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifur- 
cations of  Vector Fields (Springer, New York, 1983). 

3. M. J. Feigenbaum, Los Alamo Sci. 1:4 (1980). 
4. E. Ott, Rev. Mod. Phys. 53:655 (1981). 
5. R. V. Jensen and C. R. Oberman, Physiea 4D:183 (1982). 
6. C. S. Hsu, J. Appl. Mech. 47:931 (1980). 
7. C. S. Hsu and R. S. Guttalu, J. Appl. Mech. 47:940 (1980). 
8. C. S. Hsu, J. Appl. Mech. 48:634 (1981). 
9. C. S. Hsu, R. S. Guttalu, and W. H. Zhu, J. Appl. Mech. 49:885 (1982). 

i0. C. S. Hsu, J. Appl. Mech. 49:895 (1982). 
1I. C. S. Hsu and W. H. Leung, J. Math. Analysis Applic. 100:250 (1984). 
12. C. S. Hsu, Int. J. Non-Linear Mechanics 18:199 (1983). 
13. K. L. Cbung, Markov Chains with Stationary Transition Probabilities, 2nd ed. (Springer, 

New York, 1967). 
14. D. L. Isaacson and R. W. Madsen, Markov Chains: Theory and Applications (Wiley, 

New York, 1976). 
15. V. I. Romanovsky, Discrete Markov Chains (Wolters-Noordhoff Publishing, Groniugen, 

The Netherlands, 1970). 
16. A. N. Kolmogorov and V. M. Tihomirov, Usp. Mat. Nauk 14:3 (1959); Am. Math. Soc. 

Transl. 17(2):277 (1961). 
17. Ya. Sinai, Dokl. Akad. Nauk SSSR  125:1200 (1959). 
18. R. Bowen, Am. J. Math. 92:725 (1970). 
19. R. Shaw, Z. Naturforseh. 36a:80 (1981). 
20. C. Simo, J. Stat. Phys. 21:465 (1979). 
21. G. M. Zaslavskii and B. V. Chirikov, Usp. Fiz. Nauk 105:3 (1971). 
22. C. S. Hsu, H. C. Yee, and W. H. Cheng, J. Sound Vib. 50:95 (1977). 
23. C. S. Hsu, Adv. Appl. Mech. 17:245 (1977). 
24. Y. Ueda, New Approaches to Nonlinear Problems in Dynamics, P. Holmes, ed. (SIAM, 

Philadelphia, 1980), p. 311. 

822/38/3-4-22 


